Selen og giftvirkningerne af kviksølv

At spise fisk giver gravide kvinder og børn selen og andre næringsstoffer, der fremmer børnenes vækst og udvikling. At spise fisk kan gavne voksnes hjertesundhed. Nogle havfisk indeholder dog mere kviksølv end selen og bør derfor undgås. Følgelig fraråder sundhedsmyndigheder i USA folk at spise rovhvaler, hajer, sværdfisk, kongemakrel, sejlfisk, dybhavsaborre, teglfisk og storøjet tun. De fleste andre havfisk vil have mere selen end kviksølv i deres væv og burde være sikre, endda tilrådelige, at spise.

Selenet i vores celler er det molekylære “mål” for det giftige kviksølv. Hæmning af seleno-enzymers normale biologiske aktivitet er den mekanisme, hvormed kviksølv skader vores celler, især vores hjerne- og nerveceller [Ralston & Raymond 2018].

At opfatte selen som ”målet” for kviksølv fører til en bedre forståelse af kviksølvs giftighed end den gamle teori om selen som det ”tonikum”, der binder det giftige kviksølv i en form, der ikke længere er skadelig [Ralston & Raymond 2018].

Professor Nicholas Ralston og konsulent Lisa Raymond har foretaget en gennemgang af forskningslitteraturen om egenskaberne ved kviksølvs giftighed for at identificere de selenafhængige aspekter af kviksølvs biokemiske mekanismer og virkninger. De konkluderer at [Ralston & Raymond 2018]:

  • Methylkviksølv hæmmer irreversibelt aktiviteten af selenoenzymer, der normalt ville forhindre eller vende oxidativ skade i hjernen. (Oxidativ skade er den skade, som forårsages af frie radikaler på celler og væv, der ikke har tilstrækkelig antioxidantbeskyttelse.)
  • Selentilskud er nødvendigt, når man er udsat for methylkviksølv, og især når indtagelsen af methylkviksølv nærmer sig og overstiger cellernes lagre af selenozymer.
  • For høj udsættelse for methylkviksølv kan forårsage en “konditioneret selenmangel”.
  • Kviksølv udøver sine toksiske skader ved at afbryde og forstyrre det normale selenstofskifte.
  • De karakteristiske giftvirkninger af kviksølv skyldes bindingen af selen til kviksølv, hvilket gør selen utilgængelig for dets normale biologiske funktion og den deraf den følgende irreversible hæmning af selenoenzymerne.

Eksponering for kviksølv og behovet for tilstrækkelige selendepoter

Ralston og Raymond peger på følgende kilder, hvor man er eksponeret for giftigt kviksølv:

  • Luftbåret elementært kviksølv som, når det indåndes, absorberes med en hastighed på ca. 75%.
  • Methylkviksølv, et neurotoksisk stof der akkumuleres og øges biologisk i hav- og ferskvandsfisk (de dominerende kilder til methylkviksølv i kosten).

Ralston og Raymond nævner ikke i deres artikel fra 2018 frygten for, at eksponering for kviksølv i tændernes amalgamfyldninger kan have toksiske virkninger både for patienterne og tandlægerne [Rathore 2012].

Næsten alle er udsat for elementært kviksølv og methylkviksølv i et lavt omfang, som normalt er uden alvorlige bivirkninger. Imidlertid er høje eksponeringer neurotoksiske, fordi kviksølvet krydser blod-hjerne-barrieren.

Kviksølv bindes fortrinsvis til svovl og selen; kviksølvets affinitet for selen er dog cirka en million gange større end dens affinitet for svovl, hvilket gør selen til det største mål for kviksølv med dets giftvirkning [Ralston & Raymond 2018].

Høj eksponering for methylkviksølv som følge af tilfælde med forgiftning har givet et veldefineret billede af de motoriske og sensoriske lidelser der følger af omfattende oxidativ skade på hjernen. Et fosters hjerne er især sårbar over for skader fra kviksølv; kviksølvet passerer let over i moderkagen [Ralston & Raymond 2018]. Afhængig af offerets alder og eksponeringsniveau vil symptomerne på kviksølvs toksicitet omfatte følgende motoriske og sensoriske lidelser:

  • metallisk smag i munden
  • kvalme og opkast
  • tab af motoriske færdigheder og koordination
  • tab af muskelstyrke
  • tab af følelse i hænder og ansigt
  • tab af skarphed i syn, hørelse og tale
  • åndedrætsbesvær
  • vanskelighed med at stå ret op og gå

Biomedicinske mekanismer bag kviksølvs giftvirkning

Ralston og Raymond oplister følgende punkter om, hvordan kviksølv udøver sin giftvirkning. Deres forklaringer er væsentligt mere detaljerede end jeg kan gengive her; interesserede læsere bør anskaffe sig hele artiklen [Ralston & Raymond 2018].

  • Placenta- og blod-hjernebarriererne kan ikke stoppe passage af kviksølv. Fosterets ophobning af kviksølv vil nå en koncentration, der er højere end koncentrationen af kviksølv i moderens blod.
  • Når kviksølvet har krydset placenta- og blod-hjernebarriererne, danner det “selvmordsubstrater”, der transporterer det bundne kviksølv til de steder, hvor selenoenzymerne er aktive.
  • De steder hvor selenoenzymerne er aktive danner kviksølvet en ekstrem stabil permanent binding til selenoenzymets selenocystein-del. Som et resultat heraf kan selenozymerne ikke udføre deres væsentlige funktioner. Deres selenocystein-del blokeres af kviksølvet. På denne måde fungerer kviksølvet som en “irreversibel hæmmer af selenoenzymernes aktivitet”. F.eks. hæmmes seleno-enzymerne glutathionperoxidase og thioredoxinreduktase i deres roller som antioxidanter.
  • Skaden som følge af tabet af selenoenzymernes aktioxidantaktivitet forstærkes af kviksølvets evne til at reducere indholdet af selen i hjernen til under minimumstærsklen på ca. 60% af hjernens normale selenindhold. “Sekvestrering af selenet” sammen med kviksølv finder ikke kun sted i hjernen, men også i nyrerne og leveren. I tilfælde af en katastrofal høj eksponering for kviksølv vil der være et vedvarende tab af selen i krops- og hjernevæv. (Bemærk: Ralston og Raymond påpeger, at høje kviksølvophobninger i størrelsesordenen 10–100 μM i hjernen og det endokrine væv ikke ser ud til at have toksiske konsekvenser så længe der mindst er ca. 1 μM “frit selen” tilbage til rådighed for dannelse af selenenzymer, hvilket sikrer, at antioxidantaktiviteterne kan fortsætte).
  • Det bliver værre endnu. Sekvestrering af det cellulære selen med kviksølv vil ikke alene berøve cellerne de selenoenzymer, de har brug for, til at forhindre og vende den oxidative skade, det kan også omdanne thioredoxinreduktaser til potente initiatorer af apoptosis. Det vil sige, at de selen-berøvede celler vil begå selvmord.
  • Selenozymet selenofosfatsyntase (SEPHS2) er nødvendigt for at danne selenocystein. Hvis aktiviteten af SEPHS2 hæmmes, vil cellerne, hypotetisk, ikke have mulighed for at producere selenocystein. (Bemærk: selenocystein er en nødvendig del af de 25 kendte selenoproteiner; selenocysteins katalytiske aktivitet er nødvendig for at selenzymerne kan udføre deres funktioner).

Tab af selen og implikationerne for hjerneceller

Igen fæster jeg meget lid til Ralston og Raymonds tekst [Ralston & Raymond 2018]:

  • Hjernen har en øget risiko for oxidativ stress, fordi 1) iltforbruget er cirka 10 gange større i hjernen end i andre væv, og 2) hjernen har kun få antioxidantenzymveje. Følgelig er hjernen meget afhængig af selenoenzymer til at forhindre og vende oxidativ skade i hjernen.
  • Laboratorieundersøgelser har vist, at i perioder med mangel på selen i kosten, omdistribueres det tilgængelige selen fortrinsvis fra andet kropsvæv til hjernen og endokrint væv. Der er endvidere et præferentielt udtryk af visse selenoproteiner i hjernen, hvilket antyder et hierarkisk behov til fordel for hjerneaktiviteter.
  • Høj eksponering for kviksølv er den eneste miljømæssige belastning, der vides at forringe hjernens seleno-enzymaktiviteter alvorligt. Kviksølvforgiftning reducerer tilgængeligheden af frit selen i hjernen og formindsker hjernens seleno-enzymaktivitet, hvilket resulterer i omfattende skader på de mest aktive neuroner.
  • Obduktioner af hjerner fra ofre for kviksølvforgiftning afslører tab af nerveceller, især i sensoriske regioner i cortex, granulære celler i cerebellum, primære motoriske cortex og perifere nerver. Dette mønster ses også i laboratoriedyrundersøgelser.

Selens rolle i fosterudvikling

  • Fosteret har ikke betydende selenreserver; følgelig kan tab af selen fra moderen, der normalt forsyner til fosterets hjerne, resultere i nedsat seleno-enzymaktivitet og oxidativ skade. Selenoenzymerne iodothyronine deiodinase, thioredoxin reductase og glutathionperoxidase spiller afgørende roller i fosterets hjerneudvikling, føtal vækst, føtalt skjoldbruskkirtel- og calciumstofskifte, fosterproteinfoldning samt i forebyggelse / reversering af oxidativ skade i fosteret.
  • Dokumentation fra forskning viser, at gravide kvinder, der nedsætter deres indtagelse af fisk, sandsynligvis øger deres børns risiko for at score lavere i intelligens, finmotorik, kommunikationsevner og sociale færdigheder senere i livet.
  • Videnskabelige undersøgelser antyder, at kviksølveksponering fra indtagelse af havfisk, der indeholder mere selen end kviksølv (hvilket er tilfældet for næsten alle kommercielle marine fiskearter) ikke resulterer i udviklingsskader for børn. Moderens nedsatte indtagelse af havfisk under graviditeten er derimod forbundet med betydelige risici. Havfisk er en vigtig kilde til selen og andre vigtige næringsstoffer, der er nødvendige for børns helbred og udvikling.

Selen og tilknytningen til kviksølvs giftighed

Kviksølvs giftighed er kendetegnet ved en stille forsinkelse; det vil sige en længere forsinkelse mellem indtagelsen af det skadevoldende stof og starten på symptomerne. Symptomerne kan være måneder om at udvikle sig. Ingen har været i stand til at finde årsagen til denne latenstid [Ralston & Raymond 2018].

Ralston og Raymond mener, at latensperioden for kviksølvs giftighed er et stærkt tegn til støtte for hypotesen om, at kviksølvs giftvirkninger primært (måske udelukkende) skyldes kviksølvens hæmning af selenstofskiftet.

Ralston og Raymond hævder, at de negative følger af kviksølvs giftighed ikke vil udvikle sig, så længe der er tilstrækkeligt selen til rådighed til at understøtte den essentielle seleno-enzymaktivitet i hjernen. Hvis man imidlertid eksponeres for kviksølv i et omfang der overstiger kroppens selenreserver, så vil kviksølvbelastningen i sidste ende overvinde hjernens og nervesystemets evne til at opveje det systemiske selentab på grund af selenets binding til kviksølvet. Forskelle i den individuelle selenstatus vil påvirke varigheden af latensen.

Vedvarende nedbrydning af selendepoterne vil gradvist forringe hjernens evne til at opretholde en enzymatisk funktion i neuronerne. Når aktiviteten af de antioxidante selenoenzymer falder under en kritisk tærskel, vil skaden på de cellulære lipider, proteiner og andre vigtige biologiske molekyler resultere i de symptomer, der karakteriserer kviksølvs giftvirkning [Ralston & Raymond 2018].

Konklusioner: Selen-bindingssmekanismen for kviksølvs giftighed

Ralston og Raymond [2018] konkluderer, at de karakteristiske egenskaber ved kviksølvs giftvirkning er i overensstemmelse med kviksølvets unikke evne til at nedsætte hjernens seleno-enzymaktivitet.

Ralston og Raymond [2018] advarer om, at børn og gravide kvinder ikke bør spise kød fra rovhvaler, visse hajarter, store eksemplarer af sværdfisk, helleflynder og enhver anden type fisk, der indeholder mere kviksølv end selen i deres væv.

De bemærker, at næsten alle andre fisk og skaldyr og herunder hav- og ferskvandsfisk indeholder langt mere selen end kviksølv og vil derfor forbedre, snarere end formindske mødres og fostres selenstatus og vil være en ernæringsmæssig fordel for sundhed og udvikling [Ralston & Raymond 2018].

 

Kilder

Ralston NVC & Raymond LJ. (2018). Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim Biophys Acta Gen Subj. pii; S0304-4165(18):30141-7.

Rathore M, Singh A & Pant VA. (2012). The dental amalgam toxicity fear: a myth or actuality. Toxicology International. 19 (2): 81–88.

Informationerne i denne artikel er ikke ment som lægehjælp og bør ikke fortolkes som sådan.

Leave a Reply

Your email address will not be published. Required fields are marked *