Den passende daglige dosering af selen til normale mennesker? Normale mennesker? Hvor mange af os er omtrent normale? 68 procent af os, måske? Ja, vi mennesker er mere ens på mange måder end vi er forskellige. Imidlertid er der en betydelig biokemisk variation blandt os mennesker. Så det er svært at sige, hvem der er gennemsnitlig og normal og derefter foreslå en ideel daglig dosis selen.
Hvad siger tallene fra selenestudier?
Lad os se på tallene fra den offentliggjorte forskning og se, om vi kan få mening ud af dem. Husk: Vi mennesker har brug for tilstrækkelige selenkoncentrationer i vores plama for at opnå en optimal antioxidant- antiviral- og anti-kræftfremkaldende beskyttelse [Schrauzer 2009].
Det formodede, gavnlige område for plasma-selenniveauet
Hurst og Fairweather-Tait og kolleger, forskere fra Norwich Medical School, University of East Anglia, i Storbritannien har peget på, at det “formodede gavnlige område” ligger mellem 120 og 150 nanogram selen per milliliter plasma [Hurst 2010].
Dette giver os et udgangspunkt. Hvordan holder vi vores plasma-selensstatus på det niveau?
I 2010 rapporterede Hurst og Fairweather-Tait og deres kolleger om resultaterne fra et randomiseret, kontrolleret forsøg med et gær-selenpræparat til raske, britiske mænd og kvinder i alderen 50-64 år. Den gennemsnitlige koncentration af plasmaselen hos undersøgelsesdeltagerne ved forsøgets start var 95,7 nanogram per milliliter, klart under det foreslåede gavnlige område.
Ti uger med et dagligt tilskud på 50 milligram selen fra en selengærtablet øgede deltagernes plasma-selenkoncentrationer til et gennemsnit på 118,3 nanogram per milliliter.
Ti uger med et dagligt tilskud på 100 milligram selen fra en selengærtablet øgede deltagernes plasma-selenkoncentrationer til et gennemsnit på 152,0 nanogram per milliliter.
Den daglige selengærtablet med 50 milligram selen bragte deltagernes selenniveau op til den nedre grænse for det formodede gavnlige område. Den daglige selengærtablet med 100 mikrogram selen bragte deltagernes selenniveau op til den øvre grænse for det formodede gavnlige område.
Men vær opmærksom på, at disse resultater som Hurst, Fairweather-Tait og kolleger rapporterede, blev opnået af mænd og kvinder i alderen 50-64 år af kaukasisk afstamning, som havde en klart, lav plasma-selenkoncentration ved undersøgelsens start. Vi bør være forsigtige med at generalisere ud fra denne ret homogene gruppe i forhold til langt mere forskellige befolkningsgrupper.
Plasma-seleniveauer og risiko for prostatakræft
I 2012 offentliggjorde Hurst og Fairweather-Tait og deres kolleger resultaterne af en systematisk gennemgang og meta-analyse af forskningsresultater fra randomiserede kontrollerede forsøg, case-control-studier og prospektive kohortestudier. Alt i alt gennemgik de 12 studier med i alt 13.254 deltagere.
Deres meta-analyse viste, at plasma-selenkoncentrationer i området fra 120 nanogram per milliliter op til 170 nanogram per milliliter var forbundet med en nedsat risiko for prostatakræft [Hurst 2012]. Det er brugbare oplysninger.
Plasma-selenoprotein-niveauer
Selen udfører sine biologiske funktioner primært som en bestanddel af aminosyren selenocystein. Selenocystein er til gengæld en bestanddel af 25 selenoproteiner. Blandt de bedre kendte selenoproteiner er glutathionperoxidaser, thioredoxinreduktaser, iodothyronin-deiodinaser samt selenoprotein P.
Nu undrer du dig måske over, hvorfor vi er så optaget af plasma-seleniveauer? Ville det ikke være bedre at se på plasmaniveauerne af nogle af de helt vigtige selenoproteiner? Hvad viser undersøgelserne?
Plasma- og blodpladeniveauer af glutathionperoxidase
Hurst, Fairweather-Tait og kolleger giver os nogle tal, som vi kan se på. For eksempel viste de i deres randomiserede, kontrollerede forsøg med tilskud af selengær til raske, britiske mænd og kvinder i alderen 50-64 år, at doser på 50, 100 og 200 mikrogram pr. dag ikke signifikant ændrede niveauet af plasma-glutathionperoxidase eller blodplade-glutathionperoxidase.
Selv hos deltagere med et ret lavt gennemsnitligt niveau ved undersøgelsens start (95,7 nanogram per milliliter) var plasma-glutathionperoxidase og blodplade-peroxidase ikke følsomme nok som markører for kroppens selenstatus.
Baggrundsnotat: Glutathionperoxidase er navnet på en hel familie af antioxidant-enzymer, der beskytter celler og væv mod oxidative skader forårsaget af skadelige frie radikaler. Glutathionperoxidase udgør normalt 10 til 30 procent af den samlede mængde selen i plasma.
Husk: Selen flyder ikke rundt i kroppen som et enkelt grundstof; det findes næsten overalt i kroppen som en bestanddel af et selenoprotein.
Optimal glutathionperoxidaseaktivitet ser ud til at nå et plateau ved plasmakoncentrationer omkring 70 – 90 nanogram per milliliter. Det vil sige, at plasma-glutathionperoxidase synes at nå sin optimale aktivitet ved et niveau lavere end de niveauer, der menes at korrelere med en nedsat kræftrisiko [Hurst 2010]. Hverken plasma- eller blodplade-glutathionperoxidasestatus er følsom nok til at fungere som markør for en tilstrækkelig selenindtagelse og et tilstrækkeligt selenniveau.
Plasmaniveauer af selenoprotein P
Selenoprotein P er det mest almindelige selenoprotein i plasma som tegner sig for ca. 25% – 50% af den samlede selenmængde i plasma. Det er særligt rigt på selenocystein, den 21. aminosyre, der udgør en vital komponent i selenoproteinerne. Selenoprotein P fungerer som en antioxidant, men har også andre biologiske funktioner.
Koncentrationen af plasma-selenoprotein P er uden tvivl et bedre indeks for kroppens selenstatus end glutathionperoxidase, fordi glutathionperoxidaseaktiviteten når optimale niveauer ved lavere plasmakoncentrationer.
Plasma selenoprotein P koncentrationer
Hurst-undersøgelsen – husk data fra undersøgelsens deltagere – viste plasmakoncentrationer af selenoprotein P, der begyndte at stabilisere sig ved et niveau på 110-118 nanogram pr. milliliter.
Sammenlign med plasma-glutathionperoxidase-aktiviteten som synes at stabilisere sig ved 90 nanogram per milliliter [Duffield 1999].
NB: Mange faktorer påvirker selenstatus
Husk at det er svært at specificere, hvilke doser daglig selen, der vil resultere i hvilke gavnlige niveauer af plasma- (eller serum)-selen for alle individer. Der er simpelthen for mange faktorer, der påvirker optagelsen af selen fra vores mad og vores selentilskud.
Kostfaktorer der hæmmer selenoptagelsen
Nogle mineraler og andre kostkomponenter kan hæmme optagelsen af selen. Schrauzer identificerede en lang liste over mineraler og tungmetaller i fødevarer og vand som vil interagere med selen, hvoraf mange af dem er selen-antagonister. Når selen binder sig til tungmetaller, f.eks. kviksølv eller cadmium opnås en gavnlig afgiftning. Imidlertid vil selenets binding til andre grundstoffer resultere i et lavere reservoir af selen til fysiologiske formål [Schrauzer].
Biokemiske forskelle der påvirker selenoptagelsen
Evnen til at optage selen fra fordøjelsessystemet varierer fra individ til individ. For eksempel er der nogle tegn på, at kroppens respons på selenindtagelse kan variere afhængigt af køn [Ogawa-Wong]. Alder kan også spille en rolle for kroppens respons på selenindtagelse [Thompson].
Mange selenundersøgelser er blevet udført med overvejende kaukasiske deltagere fra USA og Europa. Vi har brug for at kende andre befolkningsgruppers respons på selentilskud.
Selentilskud, formuleringer og optagelse
Forskellige formuleringer af selentilskud kan have stor indflydelse på den hastighed hvormed og i hvilken udstrækning tilskuddet ændrer plasma-seleniveauet. På nuværende tidspunkt er den bedste formulering til nedsættelse af kræftrisikoen, en organisk selengær.
Tilskud baseret på selengær synes at optages bedre og blive længere i kroppen end tilskud baseret på syntetisk L-selenomethionin og uorganisk natriumselenit [Bügel; Larsen].
Hvad kan vi gøre med disse tal?
For dem, der ikke ved, hvor meget selen vi får i vores mad, er det måske et godt sted at starte at få målt selenindholdet i plasma eller serum? Når vi har en ide om vores plasma-selenstatus, kan vi overveje, hvor stort et selentilskud vi mener, vi har brug for: 50 eller 100 mikrogram om dagen?
Kombinationen af selengær-tabletter og coenzym Q10-kapsler
En sidste tanke: Det er også værd at nævne, at der eksisterer et særligt indbyrdes forhold mellem mikronæringsstoffet selen og det biologiske næringsstof coenzym Q10. Taget i kombination synes de to tilskud at give et bedre sundhedsmæssigt resultat [Alehagen].
Kilder
Alehagen, U., & Aaseth, J. (2015). Selenium and coenzyme Q10 interrelationship in cardiovascular diseases–A clinician’s point of view. Journal of Trace Elements in Medicine and Biology, 31157-162.
Alfthan G., Aro A., Arvilommi H., Huttunen J.K. (1991). Selenium metabolism and platelet glutathione peroxidase activity in healthy Finnish men: Effects of selenium yeast, selenite, and selenate. Am. J. Clin. Nutr. 53:120–125.
Bügel, S., Larsen, E. H., Sloth, J. J., Flytlie, K., Overvad, K., Steenberg, L. C., & Moesgaard, S. (2008). Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food & Nutrition Research, 52doi:10.3402/fnr.v52i0.1642.
Duffield A.J., Thomson C.D., Hill K.E., Williams S. (1999). An estimation of selenium requirements for New Zealanders. Am. J. Clin. Nutr. 70:896–903.
Duffield, A. J., Thomson, C. D., Hill, K. E., & Williams, S. (1999). An estimation of selenium requirements for New Zealanders. The American Journal Of Clinical Nutrition, 70(5), 896-903.
Hurst, R., Hooper, L., Norat, T., Lau, R., Aune, D., Greenwood, D. C., & Fairweather-Tait, S. J. (2012). Selenium and prostate cancer: systematic review and meta-analysis. The American Journal of Clinical Nutrition, 96(1), 111-122.
Hurst, R., Armah, C. N., Dainty, J. R., Hart, D. J., Teucher, B., Goldson, A. J., & Fairweather-Tait, S. J. (2010). Establishing optimal selenium status: results of a randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 91(4), 923-931.
Larsen, E. H., Hansen, M., Paulin, H., Moesgaard, S., Reid, M., & Rayman, M. (2004). Speciation and bioavailability of selenium in yeast-based intervention agents used in cancer chemoprevention studies. Journal Of AOAC International, 87(1), 225-232.
Ogawa-Wong, A. N., Berry, M. J., & Seale, L. A. (2016). Selenium and Metabolic Disorders: An Emphasis on Type 2 Diabetes Risk. Nutrients, 8(2), 80.
Schrauzer, G. N. (2009). Selenium and selenium-antagonistic elements in nutritional cancer prevention. Critical Reviews in Biotechnology, 29(1), 10-17.
Thompson, P. A., Ashbeck, E. L., Roe, D. J., Fales, L., Buckmeier, J., Wang, F., & Lance, P. (2016). Selenium Supplementation for Prevention of Colorectal Adenomas and Risk of Associated Type 2 Diabetes. Journal of The National Cancer Institute, 108(12),
Oplysningerne i denne artikel er ikke ment som lægehjælp og bør ikke bruges som sådan.